- ЭЛЕКТРОННЫЙ МИКРОСКОП
Рис. 1. Схема электронного микроскопа просвечивающего типа.
Рис. 1. Схема электронного микроскопа просвечивающего типа:
К катод;
ФЭ фокусирующий электрод;
А анод;
КЛ конденсорная линза;
О объект;
ОЛ объективная линза;
АД апертурная диафрагма;
ПИ плоскость изображения;
ПЛ проекционная линза;
ДП диафрагма поля зрения;
Э экран;
Ф фотопластинка.электро́нный микроско́п, прибор, в котором для получения увеличенного изображения используется пучок движущихся в вакууме электронов, фокусируемый электрическими или магнитными полями (электронными линзами). Позволяет визуально изучать частицы во много раз меньшие, чем наблюдаемые в световом микроскопе.
В биологических исследованиях, в частности при исследовании живых объектов, наиболее распространён Э. м. просвечивающего типа, обладающий разрешающей способностью 4,55 Å, иногда до 1 Å, в котором электроны пронизывают объект. Схема Э. м. этого типа дана на рис. 1. Осветительная система микроскопа, образующая и фокусирующая поток электронов, состоит из электронной пушки (катод, фокусирующий электрод и анод) и конденсорной линзы. Фокусирующая система состоит из объективной и одной (иногда двух) проекционной линз. Первое (промежуточное) увеличенное изображение объекта формируется объективной линзой, куда попадает сфокусированный конденсорной линзой пучок электронов после прохождения сквозь объект. Изображение появляется на имеющемся в этой плоскости флюоресцирующем экране в результате его свечения под действием электронов (невидимое изображение переходит в видимое). Часть электронов через отверстие, находящееся в центре промежуточного экрана, проходит в проекционную линзу, где формируется увеличенное изображение уже в другие плоскости на втором флюоресцирующем экране. На нём возникает конечное (видимое) изображение, которое является произведением увеличений, даваемых двумя линзами. Увеличение контрастности изображения обеспечивается наличием апертурной диафрагмы. Степень и характер рассеяния электронов неодинаковы в различных точках объекта. В связи с этим изменяется число электронов, задержанных апертурной диафрагмой после прохождения различных точек объекта, а следовательно, и плотность тона на изображении, которая преобразуется в световой контраст на экране. В Э. м. из-за малой величины апертурного угла глубина поля зрения очень велика и может измеряться несколькими микронами. Увеличение на экране (при сохранении разрешающей способности) находится на минимальном уровне, поэтому потеря деталей в изображении объекта визуальной электронной микроскопии восстанавливается путём дополнительного оптического увеличения и фотографирования. При электронной микроскопии существенное значение имеют объяснение наблюдаемых изображений, учёт возможных артефактов (искусственное образование, возникающее в объекте в процессе его обработки) и предупреждение ошибок. Искажение в электронно-микроскопических изображениях зависят от способов обработки объекта (сушка, фиксация, заливка и др.) при его препарировании. Исключение артефактов обеспечивается выбором наиболее подходящих методов препарирования. Полезны неоднократно повторяемые наблюдения одних и тех же объектов при использовании различных фиксаторов и способов высушивания.
Промышленность СССР выпускает ряд моделей Э. м., имеющих разные назначения и обладающих различной разрешающей способностью, например, модель УЭМВ-100 Б (рис. 2) для исследования живых микроорганизмов. Широкую известность получили также Э. м., выпускаемые в Японии, ФРГ, США, Великобритании и Голландии. См. также Микроскопия.
Литература:
Киселев Н. А., Электронная микроскопия биологических макромолекул, М., 1965;
Кельман В. М., Явор С. Я., Электронная оптика, 3 изд., Л., 1968.Рис. 2. Электронный микроскоп УЭМВ-100 Б.
Рис. 2. Электронный микроскоп УЭМВ-100 Б.
Ветеринарный энциклопедический словарь. — М.: "Советская Энциклопедия". Главный редактор В.П. Шишков. 1981.