МИКРОСКОП

МИКРОСКОП
Рис. 1. Микроскоп биологический серии «Биолам».

Рис. 1. Микроскоп биологический серии «Биолам».


Рис. 1. Микроскоп биологический серии «Биолам»:
1 — основание;
2 — микрометрическая фокусировка;
3 — предметный столик;
4 — тубосодержатель;
5 — механизм грубой фокусировки;
6 — головка;
7 — револьвер;
8 — гнездо для визуальной насадки;
9 — зеркало;
10 — конденсор;
11 — объектив;
12 — окуляр.

микроско́п (от греч. mikrós — маленький и skopéō — смотрю), оптический прибор для получения увеличенных изображений объектов, невидимых невооружённым глазом. Необходимость использования М. обусловлена невысокой разрешающей способностью человеческого глаза, который на расстоянии наилучшего видения (250 мм) может воспринимать две точки (линии) раздельно, если они расположены друг от друга не ближе, чем на 0,08—0,2 мм. Размеры микроорганизмов, клеток, кристаллов и т. п. значительно меньше этих величин. Для их изучения и предназначен М., который даёт возможность различать структуры с расстоянием между элементами (то есть обладает разрешением) около 0,2 мкм.

В зависимости от природы света и оптических эффектов, формирующих изображение, различают М., предназначенные для наблюдения в видимых, ультрафиолетовых и инфракрасных лучах; имеется и электронный микроскоп. Характерный пример М. — биологический М. серии «Биолам» (рис. 1). Механическая часть представлена основанием, укреплённой на нём коробкой с механизмом микрометрической фокусировки, к которой прикреплены сменные предметные столики и тубусодержатель механизмом грубой фокусировки. В верхней части тубусодержателя укреплена головка с револьвером и гнездом для моно- или бинокулярной визуальной насадки. Оптическая часть М. состоит из осветительного аппарата (зеркало, конденсор), объективов и окуляра. Зеркало устанавливают под конденсором, который укрепляется кронштейном на направляющей коробке под предметным столиком. Объективы ввинчиваются в отверстия с резьбой револьвера, окуляры вставляются в верхнюю часть тубуса. М. оснащаются конденсорами КОН-3 с апертурой 1,2 или ОИ-14 с апертурой 1,4, максимальное значение которых достигается масляной иммерсией. М. серии «Биолам» подразделяются на дорожные, студенческие и рабочие.

Изображение в М. формируется следующим образом (рис. 2). Концентрированные при помощи конденсора лучи света попадают на объект и, отражаясь от него, преломляются линзами объектива, создавая перевёрнутое увеличенное действительное изображение объекта. После дополнительного увеличения верхней линзой окуляра образуется мнимое изображение объекта, которое воспринимается глазом наблюдателя как действительное и как бы расположенное на плоскости между зеркалом и конденсором. Общее увеличение М. определяется произведением увеличений, обеспечиваемых объективом и окуляром. Поскольку М. оснащены объективами, имеющими увеличение от 8 до 90, и окулярами с увеличением от 5 до 20, Максимальное общее увеличение их может достигать 1800. При обычной световой микроскопии следует учитывать числовую апертуру, которой определяется разрешающая способность М., и степень исправленности аберрации и кривизны поля объективов. Величина апертуры возрастает с ростом показателя преломления среды между объектом и объективом, поэтому и применяется иммерсионный метод: берётся среда с большим показателем преломления (масляный раствор). В этом случае и апертура, и разрешающая способность больше, а предел разрешения меньше. Числовые апертуры объективов в воздушной среде составляют около 0,9, в масляной — около 1,3. Чтобы избежать получения окрашенного изображения объекта, используют частично (ахроматы) или почти полностью (апохроматы) исправленные от аберраций объективы, а для получения равномерно резкого изображения всего объекта, что особенно важно при микрофотографировании, планхроматы или планапохроматы. В последнем случае вместо обычного окуляра применяют гомали, которые дополнительно исправляют кривизну, или компенсационные окуляры. Окуляры Гюйгенса используют с ахроматическими, обычно неиммерсионными, объективами.

Смещением апертурной диафрагмы конденсора достигается косое освещение, подчёркивающее рельеф объекта за счёт теней. Если центр светопольного конденсора закрыть минимум на 2/3 кружком чёрной бумаги, можно получить эффект тёмного поля, при котором микроскопические структуры видны в виде светлых изображений на тёмном фоне. На этом же принципе устроены темнопольные конденсоры, например типа ОИ-13 (рис. 3). Центральная часть их закрыта непроницаемым диском, поэтому выходящий из конденсора в виде полого конуса свет не попадает непосредственно на объект. Отличающиеся от окружающей среды по показателям преломления структуры высвечиваются рассеянными лучами. Применяя вместо обычной ирисовой апертурной диафрагмы конденсора кольцевую диафрагму и объектив с фазовой пластинкой и фазовым кольцом, получают изображения прозрачных и бесцветных объектов, невидимых при обычной микроскопии (фазовый контраст). Принцип метода состоит в выявлении сдвигов фазы световых колебаний, которые возникают, когда свет проходит сквозь структуру, имеющую преломления, отличающиеся от показателя преломления окружающей среды. Производимые в СССР фазово-контрастные устройства типа КФ-4 и КФ-5 применяются для контрастирования живых и неживых объектов (рис. 4). Увеличив диаметр кольца фазовой пластинки, получают фазово-темнопольные объективы, пропускающие незначительную часть света, за счёт чего обеспечивается фазово-темнопольный, или аноптральный, контраст (аноптральная микроскопия). Конструкция интерференционного М. предусматривает раздвоение входящего луча, пропускание одного из полученных лучей через объект, а другого — мимо него, воссоединение и интерференцию их между собой. Разность хода лучей в М. измеряется компенсатором. Интерференционную микроскопию используют для качественной и количественной характеристики неокрашенных объектов. Поляризационный М. отличается наличием анализатора, который анализирует изменённый или отражённый объектом и предварительно поляризованный поляризатором свет осветителя. Поляризационная микроскопия используется для исследования оптических свойств неокрашенных объектов. Имеются комбинированные интерференционно-поляризационные М. типа MPI-5 (рис. 5). Принцип действия люминесцентного М. основан на использовании явления флюоресценции объектов, которая возникает под действием коротковолнового излучения (освещение сине-фиолетовым светом), что обеспечивает получение чёткой желто-зелено-оранжевой флюоресценции объектов па тёмном фоне поля зрения. Достигается это благодаря набору светофильтров, устанавливаемых за источником света, и фильтров, расположенных перед окуляром. Люминесцентные М. серии МЛ-1 и МЛ-2 (рис. 6) позволяют наблюдать объект при освещении сверху и в проходящем свете, а также при смешанном освещении в комбинации с фазово-контрастным устройством и конденсатором тёмного поля. Один из вариантов МЛ-2 (МЛ-2в) и МЛ-3 снабжены флюориметрической насадкой; МЛ-4 — специальный микроскоп-флюориметр. М. серии «ЛЮМОМ» (рис. 7) снабжены набором сменных светоделительных пластин, с помощью которых можно проводить также флюориметрию (тип И-2) и изучать объекты по методам аноптрального контраста и контактной микроскопии (тип И-3). См. также Микроскопия, Микроскопическая техника.

Литература:
Федин Л. А., Микроскопы, принадлежности к ним и лупы, М., 1961;
Пешков М. А., Милютин В. Н., Световой микроскоп, основы работы с ним и его разновидности, в кн.: Руководство по микробиологической диагностике инфекционных болезней, 2 изд., М., 1973.

Рис. 2. Оптическая схема микроскопа.

Рис. 2. Оптическая схема микроскопа.


Рис. 2. Оптическая схема микроскопа:
а — объект;
б — линза объектива;
в — перевёрнутое изображение объекта;
г — верхняя линза окуляра;
д — изображение объекта, видимое глазом.

Рис. 3. Темнопольный конденсор ОИ-13.

Рис. 3. Темнопольный конденсор ОИ-13.


Рис. 3. Темнопольный конденсор ОИ-13.

Рис. 4. Фазово-контрастное устройство КФ-4.

Рис. 4. Фазово-контрастное устройство КФ-4.


Рис. 4. Фазово-контрастное устройство КФ-4.

Рис. 5. Интерференционно-поляризационный микроскоп MPI-5.

Рис. 5. Интерференционно-поляризационный микроскоп MPI-5.


Рис. 5. Интерференционно-поляризационный микроскоп MPI-5.

Рис. 6. Люминесцентный микроскоп МЛ-2.

Рис. 6. Люминесцентный микроскоп МЛ-2.


Рис. 6. Люминесцентный микроскоп МЛ-2.

Рис. 7. Люминесцентный микроскоп «ЛЮМОМ» типа И-2.

Рис. 7. Люминесцентный микроскоп «ЛЮМОМ» типа И-2.


Рис. 7. Люминесцентный микроскоп «ЛЮМОМ» типа И-2.


Ветеринарный энциклопедический словарь. — М.: "Советская Энциклопедия". . 1981.

Игры ⚽ Нужен реферат?
Синонимы:

Полезное


Смотреть что такое "МИКРОСКОП" в других словарях:

  • микроскоп — микроскоп …   Орфографический словарь-справочник

  • МИКРОСКОП — (от греч. mikros малый и skopeo смотрю), оптический инструмент для изучения малых предметов, недоступных непосредственному рассмотрению невооруженным глазом. Различают простой М., или лупу, и сложный М., или микроскоп в собственном смысле. Лупа… …   Большая медицинская энциклопедия

  • микроскоп — а, м. microscope m.<гр. mikros малый + skopeo смотрю. Оптический прибор с системой сильно увеличивающих стекол для рассматривания предметов или частей их, не видимых вооруженным глазом. БАС 1. Микроскоп, мелкозор. 1790. Кург. // Мальцева 54.… …   Исторический словарь галлицизмов русского языка

  • МИКРОСКОП — • МИКРОСКОП (Microscopus), небольшое созвездие южного неба. Самая яркая его звезда имеет звездную величину 4,7. • МИКРОСКОП, оптический прибор, позволяющий получить увеличенное изображение мелких предметов. Первый микроскоп был создан в 1668 г.… …   Научно-технический энциклопедический словарь

  • МИКРОСКОП — (греч., от mikros маленький, и skopeo смотрю). Физический снаряд для рассматривания самых малых предметов, которые представляются, при посредстве его, в увеличенном виде. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н.,… …   Словарь иностранных слов русского языка

  • МИКРОСКОП — (от микро... и ...скоп) инструмент, позволяющий получать увеличенное изображение мелких объектов и их деталей, не видимых невооруженным глазом. Увеличение микроскопа, достигающее 1500 2000, ограничено дифракционными явлениями. Невооруженным… …   Большой Энциклопедический словарь

  • микроскоп — микротекстил, ортоскоп Словарь русских синонимов. микроскоп сущ., кол во синонимов: 11 • биомикроскоп (1) • …   Словарь синонимов

  • МИКРОСКОП — МИКРОСКОП, а, муж. Увеличительный прибор для рассматривания предметов, неразличимых простым глазом. Оптический м. Электронный м. (дающий увеличенное изображение с помощью пучков электронов). Под микроскопом (в микроскоп) рассматривать что н. |… …   Толковый словарь Ожегова

  • МИКРОСКОП — (от греч. mikros малый и skopeo смотрю), оптич. прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), не видимых невооружённым глазом. Различные типы М. предназначаются для обнаружения л изучения бактерий,… …   Физическая энциклопедия

  • МИКРОСКОП — МИКРОСКОП, микроскопа, муж. (от греч. mikros маленький и skopeo смотрю) (физ.). Оптический прибор, с системой сильно увеличивающих стекол, для рассматривания предметов, которые не могут быть видимы невооруженным глазом. Толковый словарь Ушакова.… …   Толковый словарь Ушакова

  • микроскоп — оптический прибор для получения увеличенного изображения объектов, не различимых невооруженным глазом. В микробиол. используется световой и электронный М. Один из основных показателей М. – разрешение – возможность различать два соседних объекта… …   Словарь микробиологии


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»